A Common Histone Modification Code on C4 Genes in Maize and Its Conservation in Sorghum and Setaria italica1[W][OA]
نویسندگان
چکیده
C4 photosynthesis evolvedmore than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell typespecific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the lightand cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.
منابع مشابه
A Common histone modification code on C4 genes in maize and its conservation in Sorghum and Setaria italica.
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regul...
متن کاملSetaria Comes of Age: Meeting Report on the Second International Setaria Genetics Conference
Setaria viridis is an emerging model for cereal and bioenergy grasses because of its short stature, rapid life cycle and expanding genetic and genomic toolkits. Its close phylogenetic relationship with economically important crops such as maize and sorghum positions Setaria as an ideal model system for accelerating discovery and characterization of crop genes that control agronomically importan...
متن کاملComparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species
Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize), Sorghum bicolor (L.) Moench (sorghum), and Saccharum officinarum L. (sugar cane) as well as promising second generation perennial feedstocks including Misc...
متن کاملIntegrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering
Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Fox...
متن کاملSignal integration on plant promoters
Gene promoters perceive numerous signals and integrate this information into a single response, the transcriptional activity of a gene. It was speculated that covalent modification of histones on the promoters might have an important function in storage and integration of signals. Using the genes for the core proteins of C4 metabolism in maize as a model, we associated the perception of specifi...
متن کامل